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ACCELERATION OF CONVERGENCE OF A FAMILY OF 
LOGARITHMICALLY CONVERGENT SEQUENCES 

ANDREW H. VAN TUYL 

ABSTRACT. The asymptotic behavior of several sequence transformations is in- 
vestigated as n -* oo when applied to a certain family of logarithmically 
convergent sequences. The transformations considered are the iterations of 
the transformations e(S)(An) of Shanks and Wn of Lubkin, the 0-algorithm 
of Brezinski, the Levin u- and v-transforms, and generalizations of the p- 
algorithm and the Neville table. Computational results are given for both real 
and complex sequences. 

1. INTRODUCTION 

An infinite sequence A, with limit A is defined to be logarithmically con- 
vergent if 

lim AAn+1/AAn and lim(A,+1-A)/(An-A) 
n-oo n-oo 

both exist and are equal to unity, where AAn = An+1 - An . Such sequences 
are slowly convergent, and therefore not convenient for numerical calculation. 
When these two limits are equal to s :$ 1 or 0, the convergence is called linear. 
Methods for accelerating logarithmic convergence have been investigated in [1] 
through [4], [9] through [15], [22], and in other references. 

In the present paper, we will consider the family of sequences An which are 
asymptotically of the form 

00 

( 1.1 ) An -A+ n-a E ajn-ilk 
j=O 

as n -x 00, where k > 1 is an integer, and A, a, and the aj are complex. 
The expansion in (1.1) is assumed to be asymptotic in the sense of Poincare, 
with ao =$ 0 and a :$ -m/k or -m/k- l for m > 0. We see that An 
is logarithmically convergent when Re a > 0, and divergent when Re a < 0. 
Sequences with the asymptotic behavior (1.1) occur in applications ([7, 8, and 
18], for example), and it can be shown that all slowly convergent sequences 
occurring as examples in the references of the present paper satisfy (1.1) with 
k = 1. In [18], possible applications in which k > 1 are given. 
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The purpose of the present investigation is to find the asymptotic behavior 
of the following transformations as n -x oc when applied to the family of 
sequences (1. 1): (a) the transformations e(S) (An) of Shanks and W,n of Lubkin 
and their iterations; (b) the 0-algorithm of Brezinski; (c) a generalization of the 
p-algorithm of Wynn; (d) the u- and v-transforms of Levin; and (e) a linear 
transformation which is a generalization of the Neville table. The generalization 
of the p-algorithm does not seem to have been given explicitly in the literature, 
but it can be shown to follow by applying results of [2] to sequences satisfying 
(1.1). The linear transformation in (e) appears to be new. When k = 1, some 
overlap of the present results is found with [1], where e(s)(An) is applied to 
sequences of the form (1.1), with [14] in the case of the Levin transforms, and 
more recently, with [12]. The generalization of the p-algorithm in [12] agrees 
with the present one when k = 1 . 

The 6-algorithm, the u- and v-transforms of Levin, and the iteration of Wn 
accelerate linear as well as logarithmic convergence. Because of this property, 
the Levin u-transform has been used in a general-purpose computer program 
for acceleration of convergence [5]. The 0-algorithm and the Levin transforms 
are among several procedures for acceleration of convergence tested in [ 16] and 
[17]. 

Each of the transformations (a) through (e) produces transformed sequences 
Bm,n, m = 1, 2, ... . The results of the present investigation show that for 
(a), (b), (c), and (e), Bm+I ,n converges more rapidly than Bm,n as n -x 00, 

m > 1, for all sequences An satisfying (1.1). In the case of (d), however, this 
acceleration is found only for k = 1 . For k > 2, all sequences Bm,n obtained 
from a given sequence by use of the u-and v-transforms are found to converge 
with the same rapidity. 

In the present paper, acceleration of convergence is investigated only under 
the limiting process limn , Bm,n for fixed m. This process, and the lim- 
iting process limm-,o Bm,n for fixed n are called Process I and Process II, 
respectively, in [ 14] and [ 1 5]. In [ 14] and [ 15] acceleration of convergence is in- 
vestigated theoretically under both Process I and Process II when Levin's trans- 
formations are applied to logarithmically and linearly convergent sequences, 
including sequences of the form (1.1) with k = 1 . 

The investigation of cases (a) through (e) is given in ??2 through 6 of the 
present paper. Section 7 includes numerical examples, with both real and com- 
plex a and A, to illustrate the acceleration of convergence obtained by the 
transformations considered and to test the asymptotic results. As suggested by 
the referee, calculations have also been carried out for the d(m)-transformation 
due to Levin and Sidi [10], using the algorithm and FORTRAN program of [6]. 
For m = 1, the d(m)-transformation reduces to the Levin u-transformation 
when a = SIGMA = iDO and INCR = 1 in the FORTRAN program of [6]. 
When k > 2 in (1.1) and m = k, a = 1 , the present calculations indicate that 
acceleration of convergence occurs mainly under Process II. 

2. THE TRANSFORMATIONS e(s)(An) AND W(An) 

The transformation e(s) (A ) is defined by 

(2.1) e(s)(A ) s el (An) -An 
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s :A 1, where 

(2.2) el(An) - An1 -2A (l/An-I A 
An-I A+A I~ - 2An A1/A1p 

is the first-order transform of Shanks [13, p. 39], also called the Aitken 52 
process. The transformation (2.1) was introduced to accelerate the convergence 
of An when the conditions 

(2.3) lim AAn+1/AAn = 1, lim Ael(An)/AAn = l/s $ 1 

are satisfied simultaneously. A transformation equivalent to (2.1), called Un, 
was also introduced by Lubkin [11, p. 232]. A second transformation due to 
Lubkin for acceleration of convergence of sequences satisfying (2.3), called Wn 
[11, p. 229], does not require knowledge of s . It will be denoted by W(An) in 
the following, and is given by 

(2.4) W(An) = ei()1 - AAel (An)/AAn 

We will use the notation e(s1) (e s2) (An)) = e(sl)e s2)(An) and W(Wm-l(A )) 
Wm(An), where WI(An) = W(An). Using the second expression in (2.2), we 
find that (2.1) and (2.4) can be written in the alternate forms 

(2.5) e(s) (An) = An + 1 [A(1/AAn-I )]1 

and 

(2.6) W(An) = An - AAn [A(1/AAn1)]1 
A [A(l /An- I)]1- 

respectively. The proofs of the following theorems will be carried out by direct 
substitution, noting that asymptotic expansions can always be added and mul- 
tiplied, and that division can be carried out when the leading coefficient of the 
divisor does not vanish. 

Theorem 2.1. Let An satisfy the conditions of (1.1), and let s $ 1. Then as 
n -x 00, we have 

00 

el )(An) A + n 12 , bjn-i, k = 1 

(2.7) j=o 

A+n-a-1/kZcin j/k, k >2 

j=O 

and 
00 

(2.8) e(s)(An) A + n-a dj n ilk, s a + 1, 
j=O 

where bo and co may vanish, and do $ 0. 
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Proof. We have 
00 

(2.9) AAn , n -a-Z ejn-ilk 
j=O 

for k > 1 where eo = -a ao :$ 0 . Considering the case k = 1 first, we find 
that 

00 

(2.10) [A(1/AAn-I)] n- fmn-', 
1=O 

where 

fo = aa0 
a + 1' 
aa 

(2.11) fi=- 1 

c a(al- 1) a (a - 1)(a + 2) 1 a,2 12 (a+ 1) (a +1)2 a2(a+1).a 

The first part of (2.7) follows by substitution of (1.1), (2.10), and (2.11) into 
(2.5), with 

a -i 2 1 a12 
(2.12) bo = - ao + 1 a2- 2 12 a(a +) a a0 

We see that bo may vanish for a given a $ -1 or 0. 
When k > 2, we have 

00 

(2.13) ( 1/-aE gn-ilk 

1=O 

where 

go aao 

(2.14) 
g a a+1 

(2.14) g1 - (a + 1/k)(a + 1 - l/k) a,. 
(a + 1)2 

The statement of (2.7) for k > 2 now follows from (1.1), (2.13), and (2.14), 
with 

(2.15) co - (1 - 1/k)/k (2.15) CQ 
~~~~a(a +1)a. 

We see that co vanishes when al = 0 for a $ -1 or 0. 
To prove the last part of the theorem, we find from (2.10) through (2.14) 

that (2.8) holds with 

(2.16) do (s 1)(a+ 1)ao 

when s :$ 1 and s :$ a + 1 . We see that do $0. El 
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Corollary 2.1.1. ForJixed m > 0 and k > 1, we have 

e(a+1+m/k)e(a+1+(m-1l)/k) ... e(a+l1 (An) 

(2.17) A + na-(m+l)/k Z bin, n-j/k 

j=O 

where b2m,o = O for m > 0 when k = 1, and where bm ,o may also vanish for 
other values of m when k > 1 . 
Proof. It follows from Theorem 2.1 that (2.17) holds for m = 0, since ao 54 0, 
with bo,0 = 0 when k = 1. Assuming that it holds for 0 < m < mIn, let 
bml, j = 0 for 0 < j < p - 1 for some integer p > 1, and let bml, p : 0. It then 
follows from Theorem 2.1 that (2.17) holds for ml + 1 < m < m1 +p, with 
the first p - (m - min) - 1 coefficients equal to zero for each m in this interval. 
We can now repeat this process starting from m = ml + 1, since bm1,o #5 0. 
Hence, (2.17) holds for all m > 0. When k = 1, it then follows from (2.7) 
and (2.8) that b2m,O = 0 for m>O. O 

Corollary 2.1.2. When k = 1, 
(a+2m+l) (a+2m- 1) (a+l) ( e e ~~~... e al(An) 

(2.18) ~A +n -a-2m-2bnbmjn-i, k=1, 
j=0 

for 0 < m < m1, where m1 is thefirst value of m for which bml+l,o vanishes. 

This corollary is an immediate consequence of Theorem 2.1. We see that 
Corollary 2.1.1 holds for all m > 0, while Corollary 2.1.2 may hold only for a 
finite number of values of mn. When k = 1 and (2.18) is applicable, however, 
the latter should be both more efficient and more accurate than (2.17). 

Theorem 2.2. Let An satisfy the conditions of (1.1) . Then as n -x oo, 

00 

W(An) A + n-a-2 Z bjn-i, k = 1 

(2.19) _0 

~A+na1/k cin -k k > 2, 
j=0 

where bo and co may vanish. 
Proof. Considering the case k = 1 first, we find from (2.9) through (2.12) that 

(2.20) AA [A(1/A1)] n dn-i 
j=0 

where 

do = aO, 

(2.21) di =al, 
1 -a (a+2)(a2 -a+ 2) 2 a12 

a + a2 (a+ 1) a3 a 
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We see that the first part of (2.19) follows from (1.1), (2.6), (2.20), and (2.21), 
with 

a -i 4 2 a12 (2.22) bao - 1 o - a2 + 3-. 
6a a2(a+1) a ao 

We see that the ratio of (2.22) to (2.12) is equal to 2/a. Hence, if bo vanishes 
in (2.12), it also vanishes in (2.22). When k > 2, we have 

(2.23) n\n[\ltnj]I -, E ejn- 
j=0 

where 

eO = ao, 

(2.24) (a + 1 /k) [a2 + (1 - 1 /k)a - (1 - 1 /k)/k] al 
= ~~~~2(1) a1. 

The second part of (2.19) follows from (1.1), (2.6), (2.23), and (2.24), with 

(2.25) CO 0 (1 - 
1/k)/k2 a1. 

a2(a + 1) 

We see that co vanishes when al = 0 for a # -1 or 0. ol 

Corollary 2.2. As n -x oc for Jixed m > 1, we have 
00 

Wm(An) A + n-a-2m Z bm,j n-i, k = 1 

(2.26) 00 

A+namlk ZCm, j n lk, k >2, 
j=o 

where bm,o and Cm,o may vanish for some values of m. 

Proof. When k = 1 , it follows from Theorem 2.2 that (2.26) holds through the 
firstvalue ml of m forwhich bml,o=0. Let bml,j=0 for 0<j<p-l, 
with bmlp :A 0. Then we have 

00 

(2.27) Wm' (An) , A + na-p-2m1 E b'mI, ni, 
j=o 

where b'ml, j = bml,j+p, and b'ml,o :$ 0. We can therefore apply Theorem 2.2 
again with a replaced by a +p . Continuing in this way, we obtain the first part 
of (2.26) with some of the coefficients equal to zero. Similarly, when k > 2, 
let cm,,j = 0 for 0 < j < p - 1, with cmn,,0 :# 0. Then we have 

00 

(2.28) Wm' (An) ) A + nap/kmI/k Z C'm n1/k 

j=O 

where C'm, j = Cm, j+p, and c'ml, o : 0 . As before, we obtain the second part 
of (2.26) with some of the coefficients equal to zero. Ol 
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3. THE 6-ALGORITHM 

The 0-algorithm of Brezinski is defined by the equations 

(3.1) =O, =An 

and 
and2 6(n) &(n)_1+1I/Ao2m' 
(3.2) f92m+1 2m 2m 

(3.3) o(n - 6n l) - __ __ _ __ __ __ _ (3-3) 0~~2m+2 = 2m \[/K(,/Ao(n) ,)] 
-I 

for m > 0 [4, p. 34], where A is the forward difference operator acting on n. 
The following theorem will now be proved by use of Theorem 2.2. 

Theorem 3.1. Let An satisfy the conditions of (1. 1). Then as n xo for fixed 
m > 1, we have 

00 

6(n) A + n-a-2m Z bm,jnJ- , k = 1 

(3.4) j=0 
00 

A+n-a-m/kZ ,jnJ/k, k?2 
j=O 

and 
00 

0(2n)- na+2m-1 1 , dm, jn- j k = I 

(3.5) j=0 

n+(m-l)/k+l E em, n -jlk k > 2, 

j=O 

where bm, 0, cm,o, dm, , and em,o may vanish for some values of m. 

Proof. From (3.1) through (3.3) together with (2.9), we have 

(3.6) f9(n) = I 1/5An 

and 

(n A AAn+ 1 [A(1 /AAn)] -+ (3.7) 2 - An+1 - W[(1A/nA1)] 

It follows from Theorem 2.2 and from (3.6) and (2.9) that (3.4) and (3.5) hold 
for m = 1. 

Assuming that (3.4) and (3.5) hold for a given m with bm, 0 and cm,o : 0?, 
we find from (3.2) and (3.4) that (3.5) holds for m + 1 with dm+1,o = 1/bm,o 
em,o = 1/cm ,0 . In order to show that (3.4) holds for m + 1, we find from (3.2) 
and (3.3) that 

(8n = n+ i m +-l m/(n))] 
(3.8) - 6(n1 m 2-I 

2m+2 -2m A[,A6)_ + Al 1'A6(n)] 2m- 2mJ 
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Referring to (3.4) and (3.5), we have 

[f2m- 1 (1/f2m ) 

= [A(1/Aon)]1{1 +A6(n+i) [UA(1/,A6(n)]1} 

(3.9) n 
2A0(1/A2 )V[1 +nl2Zm, jf], k= 1 

fld[A(1l/AO( )] ['1 + n- l/k Zdmjn-ilj k > 

(a+2m)(a+2m-1) 
(3.10) cm= a+2m+ 1 bm,Odm,0, 

d- =(g+ m/k)[a+(km-1)/k+1]c,eo 

Substituting (3.9) into (3.8) and referring to (2.7), we obtain 
00 (n) 2 W(S 6(nl )) +flaCt2m-2ZEem,jn-i,m k =1 

(3.11)i= 
W(6m+1)) + n-a-(m+l)/k >1m? jn jl k, k > 2, 

j=0 

where 
(3.12) a = [ + 2m + 1bm ,02dm,0, 

(a+m/)a +(m - 1)lk +l 2 
fm,O=2aj j< +] cm, 0 em,0. fm,o =-2 a + mlk + 1 ,oe? 

Finally, it follows from Theorem 2.2 and from (3.9) through (3.12) that (3.4) 
holds for m + 1. Since (3.4) and (3.5) hold for m = 1, it follows that they 
hold up to the first value of m for which bm, 0 and cm, 0 vanish. We note that 
the conditions bm ,o $& 0 and Cm , 7 $ 0 are necessary only for the application 
of Theorem 2.2, and that dm , and em , may vanish. 

To complete the proof, we first consider the case k = 1 . Assuming that (3.4) 

integer p ? 1, and let bmi p $&0 . Then writing a1 = a+p when mn> inl, we 
have 

00 

(3.13) o(n W2m 'x' A + n-a-2m-2b - 

and 

(3.14) 02na+2mlZd n-i 

j=P 

where bm = bm,j+p and 2 = dm,jap Since b0 0, and since it is 
permissible to have d 0 in the first part of the proof as noted above, it follows 
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that a continuation of the calculation of O(') leads to results of the form (3.4) 
and (3.5) with a replaced by al . This asymptotic behavior then holds until 
bl vanishes. Repeating the preceding discussion as often as necessary, we 
obtain results which can be written in the form (3.4) and (3.5) with certain of 
the coefficients equal to 0. 

Similarly, when k > 2, let dm,j = 0 for 0 < j < p- I with dm,p $0. 
Then 

00 

(3.15) 6(n A+n-c-m/kZ c' jn-jlk 
j=O 

and 

(3.16) ?(n-_ nal+(m-l)lk+1 el -inl/k 

i=P 

for m > m, with cmj = cj+p, el = em,j>p, and al = a + p/k. The 
remainder of the proof is now the same as that for the case k = 1. O 

4. A GENERALIZATION OF THE p-ALGORITHM 

Wynn's p-algorithm [22] is defined by 

Pn-,0, pl =A, 
(4.1) pn =pn+l S 

s > 1, where as before, A is the forward difference operator acting on n . An 
analysis similar to that in ?3 shows that a theorem for psn of the same form as 
Theorem 3.1 holds only when a = k = 1 . In order to obtain acceleration of 
convergence of An for general a and for k > 1 , we introduce a generalization 
of (4.1) given by 

( (a2k) _ 0 (a, k) = An k 

(4.2) -I, 0, n 

(a, k) (a ,k) IC(a,k) /, (ak) 
Ps,, n =Ps-2,n+i +Ps-l,n 

s > 1, where 

(4.3) CS(a a)=c + s- 1 

and 

(4.4) C(a, ) =a:t+ (m -l)/k 
da 
k2') 

- a + (m-1l)k + 1 2m-1 ~~~~2m 

for m > 1, k > 2. We see that the algorithm (4.2) through (4.4) reduces to the 
p-algorithm when a = k = 1, and hence, that P(l 1) = p . This algorithm can 
be arrived at by inspection, starting from (2.5) and Theorem 2.1. Alternatively, 
it can be obtained by the procedure of [2, p. 158], leading to 

C (a, k) -a,k 
(4.5) WJ2m = C2m-1 O W2m+l = C2m 

The following theorem is seen to be of the same form as Theorem 3.1. 
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Theorem 4.1. Let A, satisfy the conditions of (1.1) . Then as n ox for fixed 
m > 1, we have 

00 

p (a,k) 
,n A + n-a-2m Lbm,jn-i' k=1 

(4.6) 
i=o 

A+ n am/kcm, n i , k > 2 
m=O 

and 
00 

a, k) na+2m-1 Jdmjn-j k=1 

(4.7) j=O 
00 

na+(m-l)/k+l , em,j n-, k > 2 
j=0 

where bm, o, cm, O, dm, a, and em, o may vanish for some values of m. 

Proof. From (4.2) and (2.5), we find that 

(4.8) p(a, k) 
- /AA 

and 

(4.9) P(a, k) - A 
a 
+ 1 1 1/AAn)] -1 = e(a+1) (An+I). 

It follows from Theorem 2.1 and from (2.8), (4.8), and (4.9) that (4.6) and (4.7) 
hold for m = 1. 

Let (4.6) and (4.7) hold for a given m > 1 with bmi,0 : 0 and cm, $: 0. 

Then it follows from (4.2) and (4.6) that (4.7) holds for m + 1 with dm+1,o = 

1/bm,o and em+I = 1/cm,0. In order to show that (4.6) holds for m + 1, we 

have 

(4.10) (a,k) 
= (a,k) + C(a,k) [AP (a,k) + C(a,k)A(1/Ap(a k))] 2m+2,nn 2m,n 2m+2 2m-l,n 2m+1 2m,n 

from (4.2). From (4.6) and (4.7), we find that 

[a, k)~ + C(a kA(1 /Ap(a$ k)] -1I [AP2m-) In + 2m+I )^^2m, n) 

= [c(ak)A(1/AP(a;k))]-I{1 +Ap(a,k) [C(a,kA(1/P(a,k))] 1 } =[2m+ 1 ^2m, n ) \2m-1, n [2m+ 1 2m, n)] 

(4.11) [C2a+kA(1/APa,)] 
k 1 +n 2 

Zm,mj nJ , k = 1 

L j=O 

, [C(a,k)A(l/Ap(a,kn)]-I 21 + n -l/k 7m, j n -ilk] k > 2, 

where 

a+2m- 1 

(4.12) a+2m+1 bm0dm,O k 

d, 
a+m/k+1 cm,Oem,o k > 2. 
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From (4.10), (4.11), and (2.6), we have 
00 

P(a,+) rn. e(a+2m+l)(p(a,k)+ 1) + nz-a- 
2m-2 5 - 

(4.13) j=o 

(4.3)e(a+m/k+l)(p(a,k) + n --(m+l)/k E fm,j n-i/k k> 2 

j=O 

where 
a+2m-1 2 

(4.14) a+ + (m - 1)/k +1 2 

fm,o=- a+m/k+1 Cm, em,o. 
Finally, it follows from (4.13) and Theorem 2.1 that (4.6) holds for m + 1. 
Since (4.6) and (4.7) hold for m = 1, they also hold up to the first value of m 
for which bm, o and cm, 0 vanish. The remainder of the proof is now the same 
as that of Theorem 3.1 when on is replaced by p(a,n . 

k 

5. THE LEVIN TRANSFORMATIONS 

Transformations of the Levin type [9] can be written in the form 

(5.1) TM, n - Am(nm- An/Rn) 
(5.1) Tm,n = Am(nm-l/Rn) 

[14], where Ro = 1 and Rn = AAn- , n > 1, in the case of the u-transform, 
and Rn = -[A(1/AAnl)]-1 n > 1, in the case of the v-transform. When 
An satisfies the conditions of (1.1), we find that these choices of Rn are both 
asymptotically of the form 

00 

(5.2) Rn -n-a E rj n -jlk 

j=0 

as n -x 00, with ro = -a ao and ro = -a ao/(a+ 1) , respectively. The following 
theorem will be proved for general Rn satisfying (5.2), with ro :$ 0. Hence, 
the u- and v-transforms are included as special cases. We see that (5.1) is a 
nonlinear transformation when the rj are functions of the coefficients aj, as 
in the cases of the u- and v-transforms, and that it is a linear transformation 
when the rj are given. When k = 1 , the statement of Theorem 5.1 is the same 
as that of Theorem 4.2 of Sidi in [14]. When k = 2, however, we find that 
all sequences Tm, n have the same rate of convergence for m > 2 as n -x 00. 
We note that the differentiability conditions on the function f(z) in [14] are 
needed only for Process II. 

Theorem 5.1. Let An satisfy the conditions of (1.1), and let Rn satisfy (5.2) 
with rO $0. Then as n -x 00 for fixed m > 1, we have 

00 

Tm,n A+n-a-mEbm,jn-J, k= 1 

(5.3) 0=0 

0A+n I/k Zcm,jn h/, k > 2, 
j=0 
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where bm, 0 and Cm, 0 may vanish for some values of m. 
Proof. From (1.1) and (5.2), we have 

00 

(5.4) nm-1 An/Rn nm-1 A/Rn + nm-1 dj n-j/k 

j=O 

and 

(5 .5) nm-Il Rn -,na+m-1 E ej n -ilk 

j=0 

for k > 1, where do = ao/ro and eo = l/ro. It follows that 

Atm [nm-i rc"0 dj n W/k] 

(5.6) [n' -= 
Ad 

n ] (5.6) Tm,n ~ ~A m + I' na+m-l E~0 ej n-j/k]* 

We find that 
00 ~~~~~~00 

Am nm-i , dj n-jlk n-m-1 , jmj n-, k = 1 
(5.7) L j=O j=O 

nl/k gmjn /jlk k>2, 
j=0 

and that 
00 ~~~~~00 

(5.8) Am na+m-l E ej n-jlk na- I hm,j n1-lk 
j=0 j=0 

for k > 1, where 

jm,O = (- 1)m m! dm 
(5.9) gm,0 = -(m - 1/k - 1)(m - 1/k - 2) ... (l/k)dl, 

hm,o= (a +m- 1)(a+m-2)...aeo. 

Finally, (5.3) follows from (5.6) through (5.8) with 

(5.10) bm',=fm,o/hm,o, cm,o=gm,o/hmro. 
We see that bm, 0 = 0 when dm vanishes, and that cm, 0 = 0 when d, van- 
ishes. Ol 

6. A GENERALIZATION OF THE NEVILLE TABLE 

The Neville table for a sequence An is defined by 

(6.1) e-=An, n>O, 

and 

(6.2) em = [n em1 - (n - m) em- 1 ] /m, 
m> 1, n > m [7, p. 191]. As in [7], the Neville table is found to accelerate the 
convergence of sequences which are asymptotically of the form (1.1) with a = 1 
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and k = 1 as n -x 00 for fixed m. Noting that (n-f3)(n- )-f - nfl-+ 
O(n-1-fl) for ,B : 0, we arrive at the more general sequence transformation 

(a, k) - (6.3) eOn) = An n > 0, 

and 

(6.4) e(,/ = [nea, e n-(n-a-(m- 1)/k)ema,kl]/() +(m-1)/k), 

m> 1 n>m,and k> 1. Weseethat(6.4)reducesto(6.2)for a= 1, 
k = 1. We will now show that this transformation accelerates the convergence 
of the family (1. 1) when k > 1 . 
Theorem 6.1. Let An satisfy the conditions of (1.1). Then as n -x 00 for fixed 
m > 0, we have 

00 

(6.5) emaIn) A + n-a-m/k Z bm, j n /k 

j=O 

for k > 1, where bm, o may vanish for some values of m. 
Proof. Assuming that (6.5) holds for a given m > 0, we find from (6.4) that 

e (a,k)l -A+ {bm,O [n-am/k+l - (n - a - m/k)(n - 1) a-m/k] 

00~~~~0 (6.6) + , bm' j[n-a m/k-j/k+l -_(n- I)-a-mlk-jlk+l] 

j=l 

+ (a + m/k - 1) E bm,j (n - l)-a/-mlk-Ilk}/(a + m/k). 
j=l 

We have 

n-a-mlk+l - (n - a - m/k)(n - I) -a-m/k 

00 

(6.7) n-a-m/k-i Z Cm,j n-i 
j=0 

00 

n a-(m+l1)/k ,C n-[(i+l1)k-1 ]/k 

j=0 

where 

(6.8) Cm,0 = (a + m/k)(a + m/k - 1)/2 
and we can verify that the second and third terms on the right-hand side of 
(6.6) are asymptotically of the form of the second term on the right of (6.5) 
with m replaced by m + 1. It follows that e(a,k) iS asymptotically of the 
form of (6.5) with 

(6.9) bm+ i, o (bm, o cm,o -bm, )/(a + m) k = 1 
( -bm, I /(ak + m), k > 2. 

Hence, since a + m/k $ 0, bm+i,o may be either nonzero or zero, and the 
statement of Theorem 6.1 holds. O 
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7. NUMERICAL EXAMPLES 

In order to test the preceding asymptotic results, the six sequence transfor- 
mations considered have been applied to the sequence 

(7.1) A,=A- l lk 

for k = 1, 2, and 3, and for both real and complex values of a and A. Also, 
calculations have been carried out by the algorithm and FORTRAN program 
of [6] with a = 1, 1.1, and 1.2, and m = 1, 2, and 3. Calculations were 
carried out on the CDC Cyber 875 in double precision, or 28 significant figures, 
when An is real. When An is complex, calculations were carried out on a 
personal computer in double precision, or about 16 significant figures, using 
RM/FORTRAN. The number of terms used in each calculation was 49, but 
the later terms were not always useful because of loss of accuracy. This loss 
of accuracy may not be present in the case of the d(m)-transformation with 
a > 1, however, since the latter is then found to become increasingly more 
stable numerically as a > 1 increases, and to give more accurate results than 
for a = 1. 

Table 7.1 gives the number of significant figures obtained by each of the six 
transformations when applied to (7.1) for a = 1/2 and k = 1, 2, and 3, and 
for the algorithm of [6]. In the iteration of e(s), (2.18) was used when k = 1, 
and (2.17) when k = 2 and 3. In the algorithm of [6], a = 1 and m = k for 
k = 1, 2, and 3. More accurate results can be obtained for a = 1.1 and 1.2 
than for a = 1 , but more terms of An are then used in the calculation. 

The numerical behavior of the first six of the transformed sequences in Table 
7.1 was found to be consistent with Theorems 2.1 through 6.1 when m is not 
too large. For larger values of m, the maximum accuracy for fixed m does not 
necessarily occur at the largest value of n due to loss of accuracy. Also, the 
maximum accuracy does not necessarily occur at the largest value of m. We 
see that the algorithm of [6] gives good accuracy for each of the values of k. 

Tables 7.2 through 7.5 illustrate the asymptotic behavior of Wm(An) and 
of the u-transform as given in Theorems 2.2 and 5.1, respectively. As in ?5, 

TABLE 7.1. Number of significant digits obtained in acceleration 
of convergence of (7.1) with a = 1/2 and A = 1 

Method k = 1 k =2 k = 3 

Iter. of e(s) 18 11 9 

Wm(An) 15 12 7 

amn) 14 9 5 
(a, k) 22 11 9 Pm, ,n 

u-transform 16 3 3 

e (a, k) 19 12 8 

d(k)-transformation 16 13 9 
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TABLE 7.2. Calculated values of Bm,n = [Wm(An) - 1] /l/2+2m 

for (7.1) with k = 1 

n B,n-3 B2,n-6 B3,n-9 

47 -4.92723 -4.22842 -3.66563 
48 -4.93275 -4.23681 -3.77912 
49 -4.93803 -4.24470 -3.89092 

TABLE 7.3. Calculated values of Cm, n = [Wm(A,) - l] n 12+mlk 

for (7.1) with k=2 

n Cl,n-3 C2,n-6 C3,n-9 

47 0.318003 -0.0035669 -0.0000664 
48 0.318328 -0.0034819 -0.0000651 
49 0.318638 -0.0034005 -0.0000639 

TABLE 7.4. Calculated values of Dm,n = (Tm,n - 1) n l/2+m for 
(7.1) with k = 1 

n DI n-I D2,n-2 D3,n-3 
47 2.69032 -5.21871 9.48604 
48 2.68576 -5.21782 9.49511 
49 2.68142 -5.21695 9.50380 

TABLE 7.5. Calculated values of Em, n = (Tm,n - 1) n 1/2+1/k for 
(7.1) with k = 2 

n El n-I E2,n-2 E3,n-3 
47 0.737337 0.325399 0.190261 
48 0.740541 0.325562 0.190261 

49 0.743638 0.325719 0.190674 

the u-transform is denoted by Tm, n . We see that the calculated quantities in a 
given column become nearly constant as n increases, in agreement with these 
theorems. 

In order to investigate the acceleration of convergence of the algorithm of 
[6] numerically when applied to (7.1), we repeat the computations of Table 7.5 
for the latter when m = k = 2 and a = 1. Denoting this transformation 
by Um,n, we obtain the results shown in Table 7.6. This table indicates that 
acceleration of convergence under Process I is not significant, and hence, that 
the acceleration of convergence found in Table 7.1 for k = 2 appears to occur 
mainly under Process II. The corresponding calculations for m = k = 3 and 
a = 1 lead to these same conclusions when k = 3. 
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TABLE 7.6. Calculated values of Fm, n = (Um,n - 1) n1/2+1/k for 
(7.1) with k=2 

n Fl,n-I F2,n-2 3,n-3 

47 0.737337 0.115339 0.282021 

48 0.740541 0.114142 0.280211 
49 0.743638 0.112984 0.278329 

TABLE 7.7. Number of significant digits obtained in acceleration 
of convergence of (7.1) with a1 = 1/2 + i and A = 1 + i 

Method k = 1 k = 2 k = 3 

Iter. of e(s) 12 7 6 

Wm(An) 9 5 5 

o(n) 9 5 5 

(a, k) 13 7 6 Pm, n 
u-transform 10 4 5 

e (a,,k) 11 7 6 

d(k)-transformation 11 7 6 

TABLE 7.8. Number of significant digits obtained in the accel- 
eration of convergence of (7.1) with A = 1 + i, k = 1 

Method = 1/2 + lOi =1/2 + 25i =1/2 + 50i 

Iter. of e(s) 16 16 16 

Wm(An) 12 15 16 

Hmn) 13 15 16 
(a, k) 14 15 16 Pm, 'n 

u-transform 13 15 16 

em a,n ) 9 9 4 

d(l)-transformation 13 14 16 

Table 7.7 gives the number of significant figures obtained when the six trans- 
formations considered and the algorithm of [6] are applied to (7.1) with the 
complex parameters Ca = 1/2 + i and A = 1 + i and with k = 1, 2, and 3. 
The smaller of the number of significant digits in the real and imaginary parts 
is given. As before, the d(k)-transformation gives good accuracy for each of the 
values of k. Similarly, Table 7.8 gives the accuracy obtained with these same 
transformations when A = 1 + i, k = 1, and Ca = 1/2 + lOi, 1/2 + 25i, and 
1/2 + 50i. The difference between the u-transform and the d(l)-transformation 
is due only to differences in loss of accuracy. 

Table 7.8 shows that the generalized Neville table is the most sensitive of the 
six transformations to the magnitude of Ca in this example, and suggests that it 
should be used only for small or moderate values of IC1a I. 
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As additional examples, we apply the generalized p-algorithm to the se- 
quences 

n 

(7.2) An= E (j + e /j) 
j=l 

and 

(7 3) An K_2) 4] _ 

of [16], where they were found not to be accelerated by the p-algorithm. By 
use of the Euler-Maclaurin summation formula, it can be shown that these 
sequences satisfy the conditions of (1.1) with k = 1 and with a1 = X2- 1 in 
(7.2) and Ca = 1/2 in (7.3). It follows from Theorem 4.1 that the convergence 
of these sequences is accelerated by the generalized p-algorithm with k = 1 
and with a = - 1 and 1/2, respectively, and that their convergence is 
not accelerated by the original p-algorithm under the limiting process n -* xc 
for constant m. Calculations for (7.2) and (7.3) have been carried out in 
double precision on the CDC 875, using 49 terms of each sequence. The results 
obtained converged to 19 and 20 significant figures, respectively, in the case of 
the generalized p-algorithm, and to 2 and 3 significant figures, respectively, in 
the case of the original p-algorithm. 

Finally, we note that Example 2 of [12] satisfies (1.1) with Ca = 1/2 and 
k = 2. Applying the generalized p-algorithm to 49 terms of the sequence, we 
obtain 11 significant figures when Ca = 1/2 and k = 2, and 5 significant figures 
when Ca = 1/2 and k = 1. 
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